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Abstract

We extend the formulation of the distributed Lagrange multiplier (DLM) approach for particulate flows to high-

order methods within the spectral/hp element framework. We implement the rigid-body motion constraint inside the

particle via a penalty method. The high-order DLM method demonstrates spectral convergence rate, i.e. discretization

errors decrease exponentially as the order of spectral polynomials increases. We provide detailed comparisons between

the spectral DLM method, direct numerical simulations, and the force coupling method for a number of 2D and 3D

benchmark flow problems. We also validate the spectral DLM method with available experimental data for a transient

problem. The new DLM method can potentially be very effective in many-moving body problems, where a smaller

number of grid points is required in comparison with low-order methods.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Existing numerical methods for simulating particle-flow interactions can be broadly classified into two

categories. The first category is Lagrangian methods, in which the grid follows the fluid. The arbitrary

Lagrangian–Eulerian (ALE) [12,13] technique and the space–time finite element methods [16,17] belong to

this category. The ALE particle mover uses a technique based on a combined fluid particle momentum

equations, together with an ALE moving unstructured finite element mesh to deal with particle movement.

In the space–time approach, the temporal coordinate is discretized with finite element methods along with

the spatial coordinates, and the deformation of the spatial domain with time is reflected simply in the
deformation of the mesh in the temporal coordinate. The ALE finite element scheme can be framed as a
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special case of the space–time method [1,10]. While these methods are capable of handling particles of

different shapes, sizes and materials, the overhead of constant re-meshing the flow domain can be signifi-

cant. Typically, several hundred particles (up to 1000 in [17]) can be simulated with this approach, but
scaling the problem higher is computationally expensive.

In the second category of methods, flow computations are conducted on a fixed grid while the particle

movement or deformation is accounted for by certain constraints [2,8,26,27,32], interaction equations

[4,22,37] or front tracking/capturing technique [42]. The force coupling method (FCM) [26,27] represents

the particles by low-order force multipoles distributed over a finite volume; such force multipoles are

included as body force terms in the Navier–Stokes equations. The immersed boundary method was

initially introduced to study flow patterns around heart valves [35,36] and has evolved into a generally

useful method for problems of fluid–structure interactions [3,4]. In this method, the flow equations are
discretized on a fixed Cartesian mesh while the immersed boundary is represented by Lagrangian vari-

ables defined on a curvilinear mesh that move freely through the fixed Cartesian mesh. The two sets of

representations are linked through the interaction equations with a discrete delta function [37]. Another

method is implemented in Physalis proposed by Prosperetti and Oguz [38]; it uses an analytical solution

in the neighborhood of each particle and matches this solution to the external flow field calculated

numerically. On the other hand, for the liquid–liquid or gas–liquid two-phase flows, a large number of

front-capturing and front-tracking methods exist that fall into this category, e.g. the marker-and-cell

(MAC) method, the volume-of-fluid (VOF) method [39], level set method [28,41], constrained interpo-
lation profile method [43], the phase field method [14,15] and the front tracking method [5,42]. The

methods in the second category are generally more efficient because the computations are carried out on

a fixed grid.

The distributed Lagrange multiplier (DLM) method [2,6–8,29,32–34] (in [2] it is called virtual finite

element method), which this paper focuses on, falls into the second category. With the DLM method, the

problem on a time-dependent geometrically complex domain is extended to a stationary, larger, but simpler

domain so that a fixed mesh can be used. The no-slip boundary conditions between the particles and the

fluid are satisfied through the constraints of rigid-body motion of the fluid in the volume of particles. These
constraints are enforced through DLMs, which represent the additional body force required to maintain

the rigid-body motion inside the particle. The original DLM algorithm [6–8] with the velocity-based rigid-

body motion constraint is not readily applicable to neutrally buoyant particles. To overcome this, a strain-

rate based constraint was proposed in [32], which was suitable for both non-neutrally buoyant and

neutrally buoyant particles. Recently, Pan and Glowinski [29] have generalized the formulation of velocity-

based constraints in [8] to cases involving neutrally buoyant particles by adding extra conditions to the

space of Lagrange multipliers. The DLM method has been applied to study sedimentation [30], fluidization

[31], and viscoelastic particulate flows [40] with the number of particles reaching the order of 1000–10,000 in
2D and 100–1000 in 3D.

All the above DLM approaches are formulated based on the finite element method with linear elements,

except in [18] where Taylor–Hood finite elements are used. In the current paper we extend the formulation

of DLMs to the spectral and spectral/hp element methods, and enforce the rigid-body motion constraint

with a penalty approach [11]. A stiffly-stable high-order scheme is employed for the integration in time [19].

We demonstrate that the resulting spectral DLM method achieves exponential convergence. The objectives

of this paper are to present the spectral DLM formulation and evaluate its performance and accuracy by

systematic comparisons with direct numerical simulations and with the FCM for a number of 2D and 3D
benchmark flow problems.

This paper is organized as follows. In Section 2 we present the spectral DLM approach. In Section 3 a

brief summary of the FCM is provided. In Section 4 we quantify the accuracy and convergence behavior of

the spectral DLM method and present comparisons with other methods using similar discretizations. We

conclude in Section 5 with a summary and some remarks.
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2. Spectral DLM method

Consider a 3D flow region X containing Np particles P1; P2; . . . ; PNp . The combined particle–fluid system is
described by a system of differential-algebraic equations [8] as follows:
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In the above equations, H 1
0 ðXÞ ¼ fw 2 H 1ðXÞjw ¼ 0 on oXDg, and ~x and t are spatial and temporal co-

ordinates, respectively. oXD and oXN represent Dirichlet and Neumann boundaries of the domain, re-

spectively. ~uð~x; tÞ and pð~x; tÞ are flow velocity and pressure, respectively. ~~r is the stress tensor,

~~r ¼ �p~~dþ 2l~~Sð~uÞ, where ~~d is the unit tensor. ~V jðtÞ; ~GjðtÞ; ~xjðtÞ;~kjð~x; tÞ, (j ¼ 1; . . . ;Np) are the particle ve-

locity, position, angular velocity and the Lagrange multiplier, ~kj 2 KjðtÞ. KjðtÞ is the space of Lagrange

multipliers, KjðtÞ ¼ ðH 1ðPjðtÞÞÞ3, j ¼ 1; . . . ;Np. Here, h�; �ij denotes the inner product in the region occupied

by particle PjðtÞ. Also, qf and l are fluid density and viscosity, respectively, which are assumed to be

constant; Mj; qj;
~~Ij are particle mass, density, and the mass moment of inertia, respectively. Finally, ~g

represents a body force such as the gravity,
~~Sð~uÞ is the strain rate tensor, and

~~Sð~uÞ ¼ ðr~uþ ðr~uÞtÞ=2. Eq.
(1) represents the combined fluid–particle momentum balance. Eq. (2) is the continuity equation. Eq. (3)

represents the constraint of rigid-body motion in the region occupied by particles. Eq. (4) is the particle

kinematic relation.

The large number of constraints imposed, especially in the presence of many particles, may make the
above differential-algebraic system quite stiff. To reduce its computational complexity we enforce the rigid-

body motion constraint through a penalty method [11] as follows:

o~kj
ot�

þ sð~u� ~V j � ~xj � ð~x� ~GjÞÞ ¼ 0; j ¼ 1; . . . ;Np; ð5Þ

where s is the penalty parameter, t� is a pseudo time, and ~kj is the Lagrange multiplier.

We discretize the above system with the hybrid spectral/hp element method [20], using a finite-dimen-

sional functional space V d for the flow variables. In the spectral/hp element method we have two discret-

ization approaches as denoted by h (element size) and the Norder (polynomial order on the element). We

therefore interpret the use of d in V d to refer to these discretization parameters, and so d may be thought of
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as being a function of h (or similarly the number of spectral elements, Nel) as well as Norder, that is,

d ¼ dðNel;NorderÞ. Therefore, V d is the set of globally continuous functions that are polynomials of order

Norder on each element. In solving the Navier–Stokes equations we split the pressure and velocity fields in the
Stokes problem, which, along with the rotational pressure boundary conditions given in [19,20], leads to

unique solutions of the pressure [20]. This approach does not require the use of staggered grids for high-

order elements or the use of polynomials with orders lower than those for the velocity to approximate the

pressure. Theoretical justification for this is provided in Minev [24] and Guermond and Shen [9]. Similar to

[8], we enforce the rigid-body motion of the particle on a set of ‘‘collocation points’’, f~xigNj

i¼1, within the

region occupied by each particle PjðtÞ, j ¼ 1; . . . ;Np, that is,
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where dð~xÞ is the Dirac function. The following form of h�; �idj will be used
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Therefore, we express the spectral/hp element discretization of the system described by Eqs. (1)–(4) as

follows:
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For time integration we employ a stiffly-stable velocity-correction projection scheme [19]. For Navier–

Stokes equations this scheme propagates the fields~un, pn, ~V n
j , ~x

n
j ,
~Gn

j ,
~knj , 8j ¼ 1; . . . ;Np, over a time step Dt

to determine the fields ~unþ1, pnþ1, ~V nþ1
j , ~xnþ1

j , ~Gnþ1
j , ~knþ1

j , 8j ¼ 1; . . . ;Np in the following four substeps.

2.1. Non-linear term

Compute û via the solution of
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where ~Nð~uÞ is the non-linear term in convective form, ~Nð~uÞ ¼ �~u � r~u.
2.2. Particle solve

We assume circular rigid particles hereafter and thus omit the non-linear term ~x�~~I � ~x in the particle

angular velocity equation. Let F n
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ticle position, and the translational and angular velocities using the second-order Adams–Bashforth

scheme:
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2.3. Pressure solve

We compute pnþ1 and ^̂u via the solution of
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In the above equations the pressure boundary condition is (see [19,20])
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where ~x is the vorticity.
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2.4. Viscous effect and rigid-body motion constraint

We compute~unþ1 and~knþ1
j with a sub-cycling procedure. Let~knþ1;0

j ¼ 0. For k ¼ 1; . . . ;K, compute~unþ1
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The penalty parameter s is chosen such that the norm of ð~unþ1 � ~V nþ1
j � ~xnþ1

j � ð~x� ~Gnþ1
j ÞÞ, 8j ¼ 1; . . . ;Np

is minimized, and the value is in the range of 103–104. In the above equations, step 2.3 and step 2.4 are

coupled because r � ^̂u 6¼ 0 due to the Lagrange multiplier, unlike the standard splitting scheme [19]. This

coupling is handled with an outer-level iteration in the implementation. For the results reported in Section 4

two iterations are typically used at the outer level (between step 2.3 and step 2.4).

The Lagrange multiplier~k plays the role of a source term (see Eq. (1)). In the original velocity-correction
projection scheme [19], the source term is handled together with the non-linear term in step 2.1. However,

we found through systematic numerical experiments that handling the Lagrange multipliers in the non-

linear step instead of as in the current scheme produces larger errors. In Fig. 1 we compare the streamwise

velocity profiles for the flow (finite Reynolds number) past a circular cylinder in the center of a 2D channel

from DNS: the current DLM scheme and another scheme, in which the Lagrange multiplier is handled in

the non-linear step. The channel dimension is 2� 2 (�16 x6 1, �16 y6 1), and the cylinder diameter is

2R ¼ 1. The density and the viscosity of the fluid are qf ¼ 1:0 and m ¼ 1:0, respectively. The flow is driven

by a force Fx ¼ 2 in the streamwise direction. The simulations were conducted on a 64� 64 grid for both
y
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Fig. 1. Comparison of DNS with two DLM schemes: (1) Lagrange multiplier is handled in viscous step (current scheme); and (2)

Lagrange multiplier is handled in non-linear step. Shown are streamwise velocity profiles at x ¼ 0:6 for the flow past a circular cylinder

(radius 0.5) at the center of a 2D channel (dimension 2� 2).
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DLM schemes. The current scheme results in much smaller discrepancies compared to DNS. In contrast,

large errors in the velocity profiles are observed when the Lagrange multiplier term is treated in the non-

linear step.
3. Review of force coupling method and DNS

We present here a short summary of the FCM [23,27] for simulating particle dynamics in liquid flows.

The method is based on representing the particles by force multipoles distributed over a finite volume.

Consider the incompressible Navier–Stokes equations

qf

D~u
Dt

¼ �rp þ lr2~uþ~f ð~x; tÞ; ð19Þ
r �~u ¼ 0; ð20Þ

where qf , p, ~u and l are the fluid density, pressure, velocity and viscosity, respectively. The term ~f ð~x; tÞ
denotes the total effect of two-way coupling forces on the flow from each spherical particle n centered at
~Y nðtÞ:

f n
i ð~x; tÞ ¼ F n

i Dð~x�~Y nðtÞÞ þ Gn
ij

o

oxj
D0ð~x�~Y nðtÞÞ; i ¼ 1; 2; 3; 8n ¼ 1; . . . ;Np; ð21Þ

where Np is the number of particles. In the above equation both Dð~xÞ and D0ð~xÞ are Gaussian distribution

functions of the form

Dð~xÞ ¼ ð2pr2Þ�3=2
expð�~x2=ð2r2ÞÞ:

The values of the length scales r and r0 are directly related to the particle radius R with R=r ¼
ffiffiffi
p

p
and

R=r0 ¼ ð6
ffiffiffi
p

p
Þ1=3 as calculated in [23,27]. The first term in Eq. (21) represents a force monopole of strength ~F

while the second term represents a force dipole of strength Gij. The monopole strength is set by the total

external forces. For non-deformable particles, the force dipole is calculated iteratively through the mini-

mization of the integral-averaged strain rate in the volume occupied by the particles. The particle velocity
~V pðtÞ is evaluated from a volume integral of the local fluid velocity inside the particle region as

~V pðtÞ ¼
Z
Xp

~uð~x; tÞDð~x�~Y ðtÞÞdXp;

where Xp is the volume of the particle.

The DLM simulations are systematically compared against direct numerical simulations performed with

the Nektar code [21] in the following sections. The Nektar code implements the spectral/hp element method

[20] for incompressible and compressible unsteady flows in general 3D geometries. Flow variables are
represented in terms of Jacobi polynomial expansions. It is efficient for handling flows in complex geom-

etries while the spectral representation within each element provides high-order accuracy.
4. Results and discussion

We test and compare the spectral DLM method with DNS and FCM for several 2D and 3D benchmark

flow problems for Stokes flow as well as finite Reynolds number flows. The comparison with FCM is
conducted only for 3D flows.
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4.1. Effect of collocation point distribution

The ‘‘collocation’’ points on which to enforce the rigid-body motion can be distributed by different
means inside the particle regions. We investigate three different distributions (Fig. 3) for the flow past a

circular cylinder in a 2D channel (Fig. 2) at a finite Reynolds number. The length and the height of the

channel are chosen to be 2 (�1 < x < 1, �1 < y < 1), and the cylinder is placed at the center of the channel

with a radius R ¼ 0:25. In the first configuration (regular), the collocation points are distributed on nine

concentric circles; the points are uniformly distributed on each circle. The outer-most circle coincides with

the boundary of the cylinder. In the second configuration (random), the collocation points are distributed

randomly inside the cylinder region. In the third configuration (hybrid), the underlying flow grid points

inside the cylinder, along with the intersection points between the cylinder boundary and the grid lines, are
chosen as the collocation points.

This flow will be discussed in more detail in Section 4.4. Fig. 3 shows the streamwise velocity (left) and

wall-normal velocity (right) profiles of the flow for the three collocation point distributions, along with the

DNS results. This finite Reynolds number flow is driven by a force (Fx ¼ 20), with periodic boundary

conditions in the streamwise direction. The same number of collocation points is used for all three dis-

tributions. The regular distribution and hybrid distribution yield almost identical velocity values; both

results agree with DNS very well. The random distribution yields velocities close to the other cases, but a

slight asymmetry in the profiles is observed.
4.2. Convergence rate

Next, we examine the convergence rate of the spectral DLM method with a 2D analytic flow field

expressed by

u ¼ e2py cos 2px;
v ¼ e2py sin 2px;
p ¼ �1
2
e4py ; 06 x6 2; �16 y6 1;

on a rectangular flow domain, where u and v are the x and y components of the velocity and p is the

pressure. Velocity values calculated based on the analytic expression are used to impose the Dirichlet
x

y

Fx

x=0 x=0.3 x=0.6

Fig. 2. Schematic for flow past a circular cylinder in a 2D channel.
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Fig. 3. Effect of collocation point distribution in flow past a 2D circular cylinder. Top row: three distributions of collocation points:

regular distribution (left), random distribution (middle), hybrid distribution (right). Bottom row: streamwise (left) and wall-normal

(right) velocity profiles at x ¼ 0:3 in cylinder wake for the three distributions and DNS.
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boundary conditions at y ¼ �1 and y ¼ 1. In the x-direction periodic boundary conditions are imposed at

x ¼ 0 and x ¼ 2. In addition, we impose the constraint that the velocity satisfies the analytic expression

through DLMs in a region at the center of the flow domain. Two cases are considered. In the first case the

constraint is imposed on a square region (0:93256 x6 1:0625 and �0:06256 y6 0:0625). In the second case

the constraint is imposed on a circular disk region with radius Rdisk ¼ 0:125. For the square region no

interpolation is needed on the boundary collocation points while for the disk region the velocities need to be

interpolated at the collocation points on the disk boundary.
The Navier–Stokes equations are solved with a Fourier spectral expansion in the x-direction and a

spectral element expansion in the y-direction. For the case of a square region we place 32 grid points in

the x-direction and 32 equal-sized spectral elements in the y-direction. As a result, there are three grid

points in x-direction and two spectral elements in y-direction in the central square region where the

DLMs are employed to enforce the constraint. For the case of a disk region, we place 64 grid points in

the x-direction and 16 equal-sized spectral elements in y-direction. As a result, there are 9 grid points in x-
direction and two spectral elements in y-direction in the diameter of the circular disk where DLMs are

employed to enforce the constraint (note that we have chosen a larger disk region and a larger grid in
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order to better resolve the circular boundary). The flow starts from rest and evolves to steady state. We

then calculate the L2 and L1 errors of the computed flow velocities relative to the analytic solution. In

Fig. 4 we plot these errors of the x velocity component versus the order of the expansion polynomials for
both cases. The numerical errors decrease exponentially as the spectral order increases, indicating that the

spectral DLM method indeed achieves spectral accuracy for this particular example.
4.3. Flow past a 2D spinning cylinder near a moving wall

We consider a 2D Stokes flow past a circular cylinder spinning counter-clockwise near a wall that moves

in the streamwise direction; this flow is known as the Wannier flow [20]. An exact solution exists for this

flow in the Stokes regime, which depends only on cylinder radius, R, its rate of rotation, x, the distance
between the center of the cylinder to the moving wall, d, and the velocity of the wall, U . If we place the

origin of the coordinate system at the center of the cylinder, the exact solution is given by the following

expressions:
u ¼ U � 2ða1 þ a0Y1Þ
sþ Y1
K1

�
þ s� Y1

K2

�
� a0 ln

K1

K2

� a2
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"
þ Y2 �
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#
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Fig. 4. Convergence rate of spectral element DLM method. Norder is the order of Jacobi polynomials in the spectral element dis-

cretization in y-direction.
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where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � R2

p
; C ¼ d þ s

d � s
; a0 ¼

U
lnC

; a1 ¼ �d a0

�
þ xR2

2s

�
; a2 ¼ 2ðd þ sÞ a0

�
þ xR2

2s

�
;

a3 ¼ 2ðd � sÞ a0

�
þ xR2

2s

�
; Y1 ¼ y þ d; Y2 ¼ 2Y1; K1 ¼ x2 þ ðsþ Y1Þ2; K2 ¼ x2 þ ðs� Y1Þ2:

We compute this flow with the spectral DLM method, enforcing the rotation of the cylinder with DLMs.

Fig. 6 shows a comparison of the streamwise and wall-normal velocity profiles between the computed result

and the exact solution at three streamwise locations (indicated by the dashed lines in Fig. 5): x ¼ 0, x ¼ R and

x ¼ 2R. The parameters are chosen as U ¼ 1:0, x ¼ 2:0, R ¼ 0:25, and d ¼ 2:5. The numerical results match

the exact solution quite well, with slight discrepancies at locations near the cylinder. These discrepancies are

due to the mismatch of the boundary conditions in the streamwise direction between the exact and the nu-

merical solution. Specifically, Eqs. (22) and (23) express a flow solution in a half-infinite domain. However, in
the simulation Dirichlet boundary conditions are applied in the wall-normal direction. In the streamwise

direction we employ Fourier spectral expansions, and thus a periodic condition is implicitly assumed. Al-

though we choose a very large flow domain in the streamwise direction (50R) in the computations, the effect of

the periodic boundary condition can still be observed near the cylinder in the Stokes regime.

4.4. Flow past a circular cylinder in a 2D channel

We return now to the flow past a circular cylinder in a 2D channel (Fig. 2) and consider three finite
Reynolds numbers as well as the Stokes flow. The dimension of the channel is chosen as: �16 x6 1,

�16 y6 1. The cylinder is placed at the center of the channel (the cylinder center is at x ¼ 0; y ¼ 0) with a

radius R ¼ 0:25. Periodic boundary conditions are imposed at x ¼ �1 and x ¼ 1. No-slip conditions are

imposed on the channel walls at y ¼ �1 and y ¼ 1. The density and viscosity of the fluid are chosen to be

qf ¼ 1 and m ¼ 1, respectively. A constant force Fx is applied to drive the flow in the x-direction. The Stokes
case and three finite-Reynolds-number cases are calculated with different driving forces. Table 1 summa-

rizes the parameters in these simulations.

In the spectral DLM computations, a Fourier spectral expansion is used in the x-direction and a spectral
element expansion is used in the y-direction. DLMs are used to enforce the zero-velocity constraint in the

cylinder region. We choose the ‘‘hybrid’’ distribution of the collocation points. They consist of all the flow
ω

R

U

d

x=0 x=R x=2R

Fig. 5. Sketch of the flow past a spinning cylinder near a moving wall.
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Table 1

Force parameters for the flows past a circular cylinder in a 2D channel

Case S1 Case F1 Case F2 Case F3

ReF 2.0 2.0 20.0 100.0

Case S1: Stokes flow. Case F1–F3: finite Reynolds-number flows. ReF is the Reynolds number based on the force, ReF ¼ Fx
lm, where

Fx is a force driving the flow.
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quadrature points lying inside the cylinder region and the intersection points between the cylinder boundary

and the vertical grid lines. The flow velocities on the boundary collocation points are obtained with a

spectral element interpolation procedure

uðyÞ ¼
XNm

p¼1

up/pðyÞ; ð24Þ

where y is the point where the velocity u is to be interpolated, up are modes in the transform space, /pðyÞ are
basis functions (Jacobi polynomials of order p) evaluated at point y.

In Figs. 7 and 8 we compare the streamwise velocity profiles (left column) and wall-normal velocity

profiles (right column) at three streamwise locations, x ¼ 0:0; 0:3; 0:6, between the spectral DLM and the

direct numerical simulation results. The latter were obtained with the spectral element code Nektar, for

the four cases simulated. This code uses Jacobi polynomials with mixed weights on triangular or tet-

rahedra elements [20]. For all four cases with the spectral DLM method a grid of 128� 128 is used that

produces the converged results. The spectral DLM method and DNS produce the same distributions with

almost identical values in magnitude. At the highest Reynolds number, ReF ¼ 100, there are some dif-
ferences in the wall-normal velocity values between spectral DLM and DNS in the region outside of the

cylinder wake.
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4.5. Flow past a square cylinder in a 2D channel

The next test case is the flow past a square cylinder in a 2D channel (Fig. 9). Unlike the circular cylinder

case, there is no need for interpolation on the boundary ‘‘collocation’’ points for the square cylinder, which

will give rise to more accurate results than with interpolations.

The channel dimension is identical to that in the circular cylinder case. The square cylinder covers a

region, �0:256 x6 0:25 and �0:256 y6 0:25, at the center of the channel. Periodic conditions are imposed
in the streamwise x-direction. No-slip conditions are applied in the wall-normal direction. The fluid density

and viscosity are chosen to be qf ¼ 1:0 and m ¼ 1:0, respectively.
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The flow is driven by a constant force Fx in the streamwise x-direction. We compute four cases corre-

sponding to different flow regimes and driving forces, with one case in the Stokes regime (Fx ¼ 2:0) and
three cases at finite Reynolds numbers (Fx ¼ 2:0; 20:0; 100:0). The driving forces are chosen to be the same
as those in the circular cylinder simulations as listed in Table 1.

Again, a Fourier spectral expansion is used in the x-direction and spectral element expansions are used in

the y-direction in the spectral DLM method. DLMs are used to enforce the zero-velocity constraint in the

square cylinder region. The ‘‘collocation’’ points on which the constraints are applied consist of the flow

grid points lying within and on the boundary of the square cylinder. Because the boundary of the square

cylinder coincides with the underlying grid lines, all the boundary ‘‘collocation’’ points are on the grid

points of the flow. As a result, no interpolation is necessary in this case.

Figs. 10 and 11 show the comparison of the streamwise velocity (left column) and wall-normal velocity
(right column) profiles between spectral DLM and DNS for three downstream locations, x ¼ 0:0; 0:3; 0:6.
With the spectral DLM all four cases are computed on a grid 128� 128 which gives the converged results.
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Fig. 9. Schematic of flow past a square cylinder in a 2D channel.
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Spectral DLM method and DNS produce identical distributions and velocity magnitudes for the Stokes

case and the two lower Reynolds numbers ReF ¼ 2 and 20. At the highest Reynolds number ReF ¼ 100, the

spectral DLM method and DNS produce identical results for the streamwise velocity. Slight discrepancies

exist in the wall-normal velocity magnitude in the region outside the wake of the square cylinder. The

comparisons in this section as well as the previous section indicate that the boundary ‘‘collocation’’ points

used in interpolating fields in the DLM method have a notable effect on the accuracy of the results.

4.6. Flow past a sphere in center of a 3D channel

Next we test the spectral DLM method for flow past a sphere placed at the center of a 3D channel at a

finite Reynolds number (Fig. 12), and compare these results with DNS and FCM results.

The 3D channel dimension is 30� 10� 30 (�156 x6 15, �56 y6 5, �156 z6 15). A sphere with radius

R ¼ 1:0 is placed at the center of the channel; the sphere center coincides with the origin of the coordinate

system. The two walls of the channel (y ¼ �5 and y ¼ 5) move at a constant speed U ¼ 0:78 in the x-di-
rection, which drives the flow inside the channel. The fluid density and viscosity are chosen to be qf ¼ 1:0
and m ¼ 1:0, respectively. The Reynolds number based on the wall velocity and the particle diameter is 1.56.
Periodic boundary conditions are applied in both the x- and z-directions. No-slip boundary conditions are

imposed on the two channel walls.

This flow is computed with three methods: DLM, DNS and FCM. With the DLM method, we employ

Fourier expansions in both x- and z-directions and spectral element expansions in the y-direction to dis-

cretize the Navier–Stokes equations. DLMs are used to impose the zero-flow constraints in the region

occupied by the sphere. The constraints are applied at all the flow grid points inside the sphere and at the

boundary ‘‘collocation’’ points consisting of the intersection points between the vertical grid lines and the

sphere surface. We employ the spectral element interpolation procedure (Eq. (24)) to interpolate the ve-
locities on the boundary ‘‘collocation’’ points when solving the Lagrange multipliers.

The FCM calculation of the flow is conducted in a fashion slightly different than the DNS and the

spectral DLM method. We first conduct the DNS of this flow, and compute the force on the sphere. This

force is then used as the force monopole strength in the x-direction for the FCM simulations. In the FCM

simulations the channel walls are fixed in space. Periodic conditions are imposed in x- and z-directions, and
no-slip conditions are applied on the channel walls. The sphere is positioned at the centerline and initially at

rest. Subsequently, the sphere is released and falls along the centerline under the influence of the force

monopole. After the sphere reaches the terminal velocity, the velocity field surrounding the sphere is
transformed into the laboratory reference frame and compared with the DNS and spectral DLM results.

In Fig. 13 we compare the velocity profiles at three streamwise locations, x ¼ 0, R and 2R in the center

plane (z ¼ 0), computed with all three methods. The left plot shows the streamwise velocity (x-component)
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and the right one shows the wall-normal velocity (y-component). The spanwise velocity is not shown be-

cause it is zero in the center plane with all three methods. All three methods agree in the far field x ¼ 2R.
Near the sphere, x ¼ 0 and R, the spectral DLM demonstrates a good agreement with DNS; larger dis-

crepancies are observed between FCM and DNS in this region.

4.7. Flow past a sphere near one wall of a 3D channel

The last test case is the flow past a sphere located near one wall of a 3D channel, which has a length 15, a

height 7 and a width 7. The origin of the coordinate system is located at the center of the channel so that the
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flow domain covers �7:56 x6 7:5, �3:56 y6 3:5 and �3:56 z6 3:5. A sphere of radius R ¼ 1 is placed

near the lower channel wall with its center at ðx0; y0; z0Þ ¼ ð0;�1:5; 0Þ. The fluid density and viscosity are

chosen to be qf ¼ 1:0 and m ¼ 1:0, respectively. Periodic conditions are imposed in x- and z-directions, and
no-slip conditions are applied on the two walls of the channel. The flow is driven by a constant force in the

x-direction, F ¼ 2m
h2, where h is the channel half width.

The spectral DLM simulations employ Fourier expansions in x- and z-directions and a spectral element
discretization in y-direction. DLMs are used to impose the zero-flow constraint inside the sphere. The

‘‘collocation points’’ consist of the flow grid points lying inside the sphere and intersection points between

the surface of the sphere and the underlying flow grid lines. On the boundary collocation points the flow
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velocities are obtained via the spectral element interpolation procedure expressed by Eq. (24). In the FCM

calculations a restoring force and torque are computed via a penalty method to keep the sphere from

moving and rotating in the channel. The restoring force and torque are then used as the force monopole

strength and dipole strength, respectively.

In Fig. 14 we plot the streamwise (left figure) and wall-normal (right figure) velocity profiles at three

downstream locations, x ¼ 0, R and 2R, computed with all three methods. Similar to the observations in the

previous section, all three methods agree with one another quite well in the region far away from the sphere
(x ¼ 2R). Closer to the sphere surface and inside the sphere, the spectral DLM results are in good agreement



Table 2

Drag coefficient (CD ¼ drag= 1
2
qfU

2
md, where Um is the maximum velocity at the center line of the channel and d is the cylinder di-

ameter), lift coefficient (CL ¼ lift= 1
2
qfU

2
md), and the torque coefficient (CT ¼ torque= 1

4
qfU

2
md

2) on the sphere near one wall in a 3D

channel

Elements/grid CD CL CT

DNS 4608 (5th order) 33.932 1.236 5.064

4608 (7th order) 33.929 1.236 5.066

4608 (8th order) 33.929 1.236 5.066

FCM 360 (4th order) 35.122 1.274 4.872

360 (6th order) 35.175 1.274 5.251

360 (8th order) 35.306 1.276 5.251

DLM 96� 60� 96 33.475 1.172 5.236

96� 72� 96 33.533 1.211 5.157

96� 84� 96 33.724 1.210 5.175
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with DNS results, while larger discrepancies between FCM and DNS results are observed in these regions.

Due to asymmetry in the configuration, the flow exerts a torque and a lift force on the sphere. The coef-
ficients for the drag and lift forces on the sphere and the torque with respect to z-axis computed with all

three methods are summarized in Table 2. FCM over-predicts the drag force on the sphere. However, given

the small number of elements, FCM simulations have produced lift and torque values that are in quite good

agreement with DNS. The drag and lift forces produced by spectral DLM are in good agreement with DNS

results; the errors are within 2%. It is noted that poorly resolved regions on the surface of the sphere could

affect the accuracy of the torque in DLM. For example, if the boundary collocation points consist only of

intersection points between the sphere surface and the vertical grid lines, the torque will be over-predicted

on the grid 96� 84� 96 (with a value 5.37).
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5. Summary

We have presented a method that extends the DLM formulation to spectral/spectral element discreti-
zations for simulating particulate flows. We also compared this method with direct numerical simulation

and the FCM for several 2D and 3D flow simulations covering the Stokes regime and finite Reynolds

numbers. In all comparisons, the discretization method was spectral or spectral element so that the ac-

curacy of DLM formulation can be tested within the same interpolation framework. The spectral DLM

method that we developed implements the rigid-body motion of the particles via a penalty procedure.

In particular, the accuracy and convergence behavior of the method are quantified with an analytic flow

field. The numerical errors decrease exponentially as the spectral order increases, indicating that the

spectral DLM method achieves spectral accuracy. This result, even for the simple case we analyzed, al-
though expected, is not trivial as it demonstrates that the various differential-algebraic constraints are

implemented with sufficient accuracy so that spectral accuracy is maintained. Detailed comparisons with

DNS and FCM show that the DLM method agrees with both DNS and FCM very well in the region far

away from the particle. In regions near and inside the particle it is in good agreement with DNS. These

results indicate that the spectral DLM method captures the flow field accurately in both the near and far

fields unlike FCM. We note here that FCM can be thought of as a ‘‘lumped’’ version of DLM for which the

no-slip condition is not imposed explicitly.

We have only tested relatively simple geometries with a single particle in this first work. Clearly, this is
not a limitation of the method and we are currently pursuing more complex problems as well. However, we

wanted to focus on well-defined benchmarks that were currently lacking in the DLM literature. We have

found, for example, that while the choice of the collocation points on the boundaries is a factor on the

accuracy of DLM method, it can be overcome by maintaining nominally regular grids and pursuing p-

refinement. We have also demonstrated that we can achieve very high levels of accuracy using DLM with

relatively few points.

So far we have concentrated on the verification of the new spectral DLM method. We have also con-

sidered the validation of the method with experimental measurements. Fig. 15 shows the velocity history of
a single sphere settling in a channel computed with spectral DLM method and a comparison with the

experimental measurement in [25] at Reynolds number Rep ¼ 41 (based on the terminal velocity and the
t/τ95
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Fig. 15. Sedimentation of a single sphere: sphere velocity versus time from spectral DLM calculation and from experimental mea-

surement by Mordant and Pinton [25] at Reynolds number Rep ¼ 41 based on the terminal velocity and sphere diameter. Vp is sphere

velocity; VT is the terminal velocity; s95 is the time it takes for the sphere to reach 95% of the terminal velocity.



Table 3

Comparison of timing among DNS, FCM and spectral DLM for the flow past a sphere near one wall in a 3D channel (Section 4.7)

Elements/grid Processors Seconds/step Time steps Computers

DNS 4608 (5th order) 32 25 6000 IBM SP3

FCM 360 (6th order) 1 16 6000 Pentium 4 PC

DLM 96� 72� 96 16 32 4000 Pentium 3 cluster

‘‘Seconds/step’’ refers to the wall clock time per time step. ‘‘Time steps’’ records the total number of time steps to convergence.
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sphere diameter). The result obtained by spectral DLM is in good agreement with the experimental data,

indicating that the new method has captured the unsteady flow accurately in time.

Finally, we comment on the computational complexity of DLM in comparison with other methods.

Table 3 lists the wall-clock timing results of the three methods presented in the paper for the sphere flow

problem in Section 4.7. In the spectral/hp DNS a great deal of resolution and CPU cycles are spent on

resolving the flow surrounding the particle. Surprisingly, the cost of spectral DLMmethod is comparable to

that of DNS for particles fixed in space. In [33] an adaptation of the DLM version in [32] is reported, which
appears promising in reducing the computational cost of DLM calculations. On the other hand, because

FCM does not impose the no-slip condition exactly, it exhibits a significant saving in resolution and

computational cost. The true benefit of spectral DLM and potentially superior efficiency over DNS should

be expected for many moving particles, for which the cost of DNS based on the ALE formulation will

increase substantially whereas the cost of spectral DLM is expected to increase only slightly. Future work

will document these cases as well.
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